Pages

Subscribe:

Jumat, 13 Januari 2012

pangkat tak sebenarnya


Konversi Antar Basis Bilangan
Sudah dikenal, dalam bahasa komputer terdapat empat basis bilangan. Keempat bilangan itu adalah biner, oktal, desimal dan hexadesimal. Keempat bilangan itu saling berkaitan satu sama lain. Rumus atau cara mencarinya cukup mudah untuk dipelajari. Konversi dari desimal ke non-desimal, hanya mencari sisa pembagiannya saja. Dan konversi dari non-desimal ke desimal adalah:
1. Mengalikan bilangan dengan angka basis bilangannya.
2. Setiap angka yang bernilai satuan, dihitung dengan pangkat NOL (0). Digit puluhan, dengan pangkat SATU (1), begitu pula dengan digit ratusan, ribuan, dan seterusnya. Nilai pangkat selalu bertambah satu point.
[sunting]Konversi Biner ke Oktal
Metode konversinya hampir sama. Cuma, karena pengelompokkannya berdasarkan 3 bit saja, maka hasilnya adalah: 1010 (2) = ...... (8) Solusi: Ambil tiga digit terbelakang dahulu. 010(2) = 2(8) Sedangkan sisa satu digit terakhir, tetap bernilai 1. Hasil akhirnya adalah: 12.
[sunting]Konversi Biner ke Hexadesimal
Metode konversinya hampir sama dengan Biner ke Oktal. Namun pengelompokkannya sejumlah 4 bit. Empat kelompok bit paling kanan adalah posisi satuan, empat bit kedua dari kanan adalah puluhan, dan seterusnya. Contoh: 11100011(2) = ...... (16) Solusi: kelompok bit paling kanan: 0011 = 3 kelompok bit berikutnya: 1110 = E Hasil konversinya adalah: E3(16)
[sunting]Konversi Biner ke Desimal
Cara atau metode ini sedikit berbeda. Contoh: 10110(2) = ......(10) diuraikan menjadi: (1x24)+(0x23)+(1x22)+(1x21)+(0x20) = 16 + 0 + 4 + 2 + 0 = 22 Angka 2 dalam perkalian adalah basis biner-nya. Sedangkan pangkat yang berurut, menandakan pangkat 0 adalah satuan, pangkat 1 adalah puluhan, dan seterusnya.
[sunting]Konversi Oktal ke Biner
Sebenarnya, untuk konversi basis ini, haruslah sedikit menghafal tabel konversi utama yang berada di halaman atas. Namun dapat dipelajari dengan mudah. Dan ambillah tiga biner saja. Contoh: 523(8) = ...... (2) Solusi: Dengan melihat tabel utama, didapat hasilnya adalah: 3 = 011 2 = 010 5 = 101 Pengurutan bilangan masih berdasarkan posisi satuan, puluhan dan ratusan. Hasil: 101010011(2)
[sunting]Konversi Hexadesimal ke Biner
Metode dan caranya hampir serupa dengan konversi Oktal ke Biner. Hanya pengelompokkannya sebanyak dua bit. Seperti pada tabel utama. Contoh: 2A(16) = ......(2)
Solusi:
A = 1010,
2 = 0010
caranya: A=10
10:2=5(0)-->sisa
5:2=2(1)
2:2=1(0)
1:2=0(1)
ditulis dari hasil akhir
hasil :1010
2:2=1(0)-->sisa
1:2=0(1)
ditulis dari hasil akhir
hasil:010
jadi hasil dan penulisannya 0101010 sebagai catatan angka 0 diawal tidak perlu di tulis.
[sunting]Konversi Desimal ke Hexadesimal
Ada cara dan metodenya, namun bagi sebagian orang masih terbilang membingungkan. Cara termudah adalah, konversikan dahulu dari desimal ke biner, lalu konversikan dari biner ke hexadesimal. Contoh: 75(10) = ......(16) Solusi: 75 dibagi 16 = 4 sisa 11 (11 = B). Dan hasil konversinya: 4B(16)
[sunting]Konversi Hexadesimal ke Desimal
Caranya hampir sama seperti konversi dari biner ke desimal. Namun, bilangan basisnya adalah 16. Contoh: 4B(16) = ......(10) Solusi: Dengan patokan pada tabel utama, B dapat ditulis dengan nilai "11". (4x161)+(11x160) = 64 + 11 = 75(10)
[sunting]Konversi Desimal ke Oktal
Caranya hampir sama dengan konversi desimal ke hexadesimal. Contoh: 25(10) = ......(8) Solusi: 25 dibagi 8 = 3 sisa 1. Hasilnya dapat ditulis: 31(8)
25 : 8 sisa 1 3 -------- 3 hasilnya adalah 31
[sunting]Konversi Oktal ke Desimal
Metodenya hampir sama dengan konversi hexadesimal ke desimal. Dapat diikuti dengan contoh di bawah ini: 31(8) = ......(10) Solusi: (3x81)+(1x80) = 24 + 1 = 25(10)
PERPANGKATAN DAN AKAR BILANGAN
A. Perpangkatan
Perpangkatan bilangan adalah perkalian berulang atau berganda bilangan dengan faktor-faktor bilangan yang sama. Bentuk perpangkatan adalah sebagai berikut..
a x a x ….x a = aⁿ
n faktor
Bentuk umumnya adalah aⁿ, di mana a disebut bilangan pokok atau bilangan dasar, sedangkan n disebut pangkat atau eksponen.
Contoh :
• 2³ (dibaca dua pangkat tiga) = 2 x 2 x 2 =8
• 5² (dibaca lima pangkat dua0 = 5x 5 = 25
Perpangkatan bilangan sangat berguna untuk meringkas bentuk perkalian berulang dalam jumlah besar.
Selanjutnya kita akan mempelajari babarapa sifat yang berlaku dalam perpangkatan.
Terdapat 6 sifat operasi perpanga\katan yaitu :
(a x b)ⁿ = aⁿ x bⁿ
am x aⁿ = am+n
am : aⁿ = am-n
(a : b)ⁿ = aⁿ : bⁿ
(a)ⁿ = amxn
aⁿ = dengan a  0
3
Bukti kebenaran dari sifat-sifat di atas dapat Anda lakukan setalah Anda mempelajari unit 7 mengenai penalaran induktif dan deduktif. Sementara ini Anda dapat menggunakan sifat-sifat tersebut untuk menyelesaikan soal-saol mengenai perpangkatan.
Pada perpangkatan, bilangan pokok dapat berupa bilangan bulat maupun pecahan, demikian juga untuk pangkat atau eksponen. Pangkat juga dapat berupa bilangan nol. Dalam perpangkatan, kedua komponen (bilangan pokok dan pangkat) sama dengan pentingnya. Namun demikian, perubahan hasil perpangkatan terutama ditentukan oleh nilai pangkatnya. Oleh karena itu pembedaan nilai pangkat akan dibahas secara khusus.
Pangkat dapat barupa bilangan nol, bilangan bulat (positif dan negatif), bilangan pecahan (rasional) dan bilangan irrasional. Bilangan irrasional tidak dibahas pada bahan ajar ini. Untuk lebih jelasnya dapat dilihat skema berikut ini.

Pangkat Bilangan
C. Bulat Posetif

1. Bilangan Bulat
a. Bulat Negatif
b. Bulat Nol
2. Bilangan Pecahan
b. Pecahan Posetif
a. Pecahan Negatif

4
Bagaimana jika suatu bilangan dipangkatkan dengan nol ? Sembarang bilangan bila dipangkatkan nol akan maenghasilkan nilai 1, tidak perduli apakah bilangan pokoknya merupakan bilangan positif atau negative.
Contoh:
● 5° = 1
Seperti yang telah dikemukakan sebelumnya perpangkatan bilangan adalah bentuk perkalian berulang atau berganda. Berdasarkan skema pangkat bilangan, pangkat dapat berupa bilangan bulat positif atau negatif. Pangkat bilangan bulat positif merupakan bentuk parkalian perkalian berulang yang sebenarnya. Nilai pangkat/ekponen menunjukan banyak perkalian berulang (factor) nilai itu sendiri.
Sembarang bilangan bila dipangkatkan 1 akan menghasilkan bilangan itu sendiri.
Contoh :
● 21 = 2
  =
Baik bilangan pokok yang merupakan bilangan bulat maupun pecahan, bila dipangkatkan dengan 1 maka hasil perpangkatannya bernilai tetap sama yaitu bilangan itu sendiri.
Sembarang bilangan bila dipangkatkan 2 akan menghasilkan perkalian berulang 2 kali bilangan itu sendiri. Contoh :
●32 = 3 x 3 = 9
●102 = 10 x 10 = 100
Sembarang bilangan bila dipangkatkan 3 akan menghasilkan perkalian berulang 3 kali bilangan itu sendiri.
5
Contoh :
● 43 = 4 x 4 x 4 = 64
● 103 = 10 x 10 x 10 = 1000
Perbandingan pembilang dan penyebut dalam bilangan pokok pecahan bersifat tetap.
Pangkat bilangan bulat negatif atau seriang disebut pangkat tak sebenarnya, menunjukan bahwa perkalian berulang pecahan/kebalikan bilangan itu sendiri.
Bentuk umumnya sebagai berikut.

6
Terlihat bahwa bilangan pokoknya adalah bilangan bulat, maka pangkat -1 nya adalah pecahan/kebalikannya. Secara umum berlaku.

Sembarang bilangan bila dipangkatkan -2 akan menghasilkan kuadrat kebalikan bilangan itu sendiri.
Contoh :
Bila bilangan pokok berbentuk pecahan dipangkatkan -2, maka hasilnya dapat berupa bilangan bulat ataupun bilangan pecahan.
Sembarang bilangan bila dipangkatakn -3 akan menghasilkan bilangan kubik dari kebalikan bilangan itu sendiri. Contoh :
B. Akar Bilangan
Pada dasarnya pengertian akar bilangan dapat dijelaskan melalui perpangkatan. Akar bilangan merupakan perpangkatan dengan pangkat/eksponen bilangan pecahan. Pangkat bilangan pecahan disebut juga pangkat rasional. Secara umum definisi akar bilangan sebagai berikut.
7
Definisi :  (dibaca : akar n dari bilangan a) adalah bilangan yang apabila dipangkatkan dengan n hasilnya sama dengan a.
 dapat juga ditulis
Akar bilangan 3 atau sama dengan pangkat pecahan

0 komentar:

Poskan Komentar

 
Free Blue Multi Glitter Pointer Cursors at www.totallyfreecursors.com