Pages

Subscribe:

Jumat, 13 Januari 2012

himpunan(matematika)


Himpunan (matematika)
Dalam matematika, himpunan adalah segala koleksi benda-benda tertentu yang dianggap sebagai satu kesatuan. Walaupun hal ini merupakan ide yang sederhana, tidak salah jika himpunan merupakan salah satu konsep penting dan mendasar dalam matematika modern, dan karenanya, studi mengenai struktur kemungkinan himpunan dan teori himpunan, sangatlah berguna.
Notasi Himpunan

Hubungan di antara 8 buah set dengan menggunakan diagram Venn
Biasanya, nama himpunan ditulis menggunakan huruf besar, misalnya S, A, atau B, sementara elemen himpunan ditulis menggunakan huruf kecil (a, c, z). Cara penulisan ini adalah yang umum dipakai, tetapi tidak membatasi bahwa setiap himpunan harus ditulis dengan cara seperti itu. Tabel di bawah ini menunjukkan format penulisan himpunan yang umum dipakai.
Notasi      Contoh
Himpunan  Huruf besar      S
Elemen himpunan       Huruf kecil (jika merupakan huruf)     a
Kelas Huruf tulisan tangan 
Himpunan-himpunan bilangan yang cukup dikenal, seperti bilangan kompleks, riil, bulat, dan sebagainya, menggunakan notasi yang khusus.
Bilangan    Asli   Bulat Rasional    Riil    Kompleks
Notasi                                     
Simbol-simbol khusus yang dipakai dalam teori himpunan adalah:
Simbol      Arti Simbol        Arti
{} atau      Himpunan kosong
        Operasi gabungan dua himpunan
        Operasi irisan dua himpunan
, , ,    Subhimpunan, Subhimpunan sejati, Superhimpunan, Superhimpunan sejati
AC    Komplemen
        Himpunan kuasa

{} atau      Himpunan kosong
        Operasi gabungan dua himpunan
        Operasi irisan dua himpunan
, , ,    Subhimpunan, Subhimpunan sejati, Superhimpunan, Superhimpunan sejati
AC    Komplemen
        Himpunan kuasaEnumerasi, yaitu mendaftarkan semua anggota himpunan. Jika terlampau banyak tetapi mengikuti pola tertentu, dapat digunakan elipsis (...).



Pembangun himpunan, tidak dengan mendaftar, tetapi dengan mendeskripsikan sifat-sifat yang harus dipenuhi oleh setiap elemen himpuan tersebut.



Notasi pembangun himpunan dapat menimbulkan berbagai paradoks, contohnya adalah himpunan berikut:

Himpunan A tidak mungkin ada, karena jika A ada, berarti harus mengandung anggota yang bukan merupakan anggotanya. Namun jika bukan anggotanya, lalu bagaimana mungkin A bisa mengandung anggota tersebut.
[sunting]Himpunan kosong

Himpunan {apel, jeruk, mangga, pisang} memiliki anggota-anggota apel, jeruk, mangga, dan pisang. Himpunan lain, semisal {5, 6} memiliki dua 
Himpunan dapat didefinisikan dengan dua cara, yaitu:
anggota, yaitu bilangan 5 dan 6. Kita boleh mendefinisikan sebuah himpunan yang tidak memiliki anggota apa pun. Himpunan ini disebut sebagai himpunan kosong.
Himpunan kosong tidak memiliki anggota apa pun, ditulis sebagai:

[sunting]Relasi antar himpunan

[sunting]Subhimpunan
Dari suatu himpunan, misalnya A = {apel, jeruk, mangga, pisang}, dapat dibuat himpunan-himpunan lain yang elemen-elemennya adalah diambil dari himpunan tersebut.
{apel, jeruk}
{jeruk, pisang}
{apel, mangga, pisang}
Ketiga himpunan di atas memiliki sifat umum, yaitu setiap anggota himpunan itu adalah juga anggota himpunan A. Himpunan-himpunan ini disebut sebagai subhimpunan atau himpunan bagian dari A. Jadi dapat dirumuskan:
B adalah himpunan bagian dari A jika setiap elemen B juga terdapat dalam A.

Kalimat di atas tetap benar untuk B himpunan kosong. Maka  Untuk sembarang himpunan A,

Definisi di atas juga mencakup kemungkinan bahwa himpunan bagian dari A adalah A sendiri.
Untuk sembarang himpunan A,

Istilah subhimpunan dari A biasanya berarti mencakup A sebagai subhimpunannya sendiri. Kadang-kadang istilah ini juga dipakai untuk menyebut himpunan bagian dari A, tetapi bukan A sendiri. Pengertian mana yang digunakan biasanya jelas dari konteksnya.
Subhimpunan sejati dari A menunjuk pada subhimpunan dari A, tetapi tidak mencakup A sendiri.

[sunting]Superhimpunan
Kebalikan dari subhimpunan adalah superhimpunan, yaitu himpunan yang lebih besar yang mencakup himpunan tersebut.

[sunting]Kesamaan dua himpunan
Himpunan A dan B disebut sama, jika setiap anggota A adalah anggota B, dan sebaliknya, setiap anggota B adalah anggota A.

ataujuga subhimpunan dari A.
Definisi di atas sangat berguna untuk membuktikan bahwa dua himpunan A dan B adalah sama. Pertama, buktikan dahulu A adalah subhimpunan B, kemudian buktikan bahwa B adalah subhimpunan A.
[sunting]Himpunan Kuasa
Himpunan kuasa atau himpunan pangkat (power set) dari A adalah himpunan yang terdiri dari seluruh himpunan bagian dari A. Notasinya adalah .
Jika A = {apel, jeruk, mangga, pisang}, maka :
 { { },
   {apel}, {jeruk}, {mangga}, {pisang},
   {apel, jeruk}, {apel, mangga}, {apel, pisang},
   {jeruk, mangga}, {jeruk, pisang}, {mangga, pisang},
   {apel, jeruk, mangga}, {apel, jeruk, pisang}, {apel, mangga, pisang}, {jeruk, mangga, pisang},
   {apel, jeruk, mangga, pisang} }
Banyaknya anggota yang terkandung dalam himpunan kuasa dari A adalah 2 pangkat banyaknya anggota A.
[sunting]Kelas

Suatu himpunan disebut sebagai kelas, atau keluarga himpunan jika himpunan tersebut terdiri dari himpunan-himpunan. Himpunan  adalah sebuah keluarga himpunan. Perhatikan bahwa untuk sembarang himpunan A, maka himpunan kuasanya,  adalah sebuah keluarga himpunan.
Contoh berikut,  bukanlah sebuah kelas, karena mengandung elemen c yang bukan himpunan
Kardinalitas dari sebuah himpunan dapat dimengerti sebagai ukuran banyaknya elemen yang dikandung oleh himpunan tersebut. Banyaknya elemen himpunan {apel,jeruk,mangga,pisang} adalah 4. Himpunan {p,q,r,s} juga memiliki elemen sejumlah 4. Berarti kedua himpunan tersebut ekivalen satu sama lain, atau dikatakan memiliki kardinalitas yang sama.
Dua buah himpunan A dan B memiliki kardinalitas yang sama, jika terdapat fungsi korespondensi satu-satu yang memetakan A pada B. Karena dengan mudah kita membuat fungsi  yang memetakan satu-satu dan kepada himpunan A ke B, maka kedua himpunan tersebut memiliki kardinalitas yang sama.
[sunting]Himpunan Denumerabel
Jika sebuah himpunan ekivalen dengan himpunan , yaitu himpunan bilangan asli, maka himpunan tersebut disebut denumerabel. Kardinalitas dari himpunan tersebut disebut sebagai kardinalitas .
Himpunan semua bilangan genap positif merupakan himpunan denumerabel, karena memiliki korespondensi satu-satu antara himpunan tersebut dengan himpunan bilangan asli, yang dinyatakan oleh .

[sunting]Himpunan Berhingga
Jika sebuah himpunan memiliki kardinalitas yang kurang dari kardinalitas , maka himpunan tersebut adalah himpunan berhingga.
[sunting]Himpunan Tercacah
Himpunan disebut tercacah jika himpunan tersebut adalah berhingga atau denumerabel.
[sunting]Himpunan Non-Denumerabel
Himpunan yang tidak tercacah disebut himpunan non-denumerabel. Contoh dari himpunan ini adalah himpunan semua bilangan riil. Kardinalitas dari himpunan jenis ini disebut sebagai kardinalitas . Pembuktian bahwa bilangan riil tidak denumerabel dapat menggunakan pembuktian diagonal.
Himpunan bilangan riil dalam interval (0,1) juga memiliki kardinalitas , karena terdapat korespondensi satu-satu dari himpunan tersebut dengan himpunan seluruh bilangan riil, yang salah satunya adalah .
[sunting]Fungsi Karakteristik

Fungsi karakteristik menunjukkan apakah sebuah elemen terdapat dalam sebuah himpunan atau tidak.

Jika  maka:
χA(apel) = 1
χA(durian) = 0
χA(utara) = 0
χA(pisang) = 1
χA(singa) = 0
Terdapat korespondensi satu-satu antara himpunan kuasa  dengan himpunan dari semua fungsi karakteristik dari S. Hal ini mengakibatkan kita dapat menuliskan himpunan sebagai barisan bilangan 0 dan 1, yang menyatakan ada tidaknya sebuah elemen dalam himpunan tersebut.
[sunting]Representasi Biner
Jika konteks pembicaraan adalah pada sebuah himpunan semesta S, maka setiap himpunan bagian dari S bisa dituliskan dalam barisan angka 0 dan 1, atau disebut juga bentuk biner. Bilangan biner menggunakan angka 1 dan 0 pada setiap digitnya. Setiap posisi bit dikaitkan dengan masing-masing elemen S, sehingga nilai 1 menunjukkan bahwa elemen tersebut ada, dan nilai 0 menunjukkan bahwa elemen tersebut tidak ada. Dengan kata lain, masing-masing bit merupakan fungsi karakteristik dari himpunan tersebut. Sebagai contoh, jika himpunan S = {a, b, c, d, e, f, g}, A = {a, c, e, f}, dan B = {b, c, d, f}, maka:
 Himpunan                            Representasi Biner
 ----------------------------        -------------------
                                     a b c d e f g
 S = { a, b, c, d, e, f, g }   -->   1 1 1 1 1 1 1
 A = { a,    c,    e, f    }   -->   1 0 1 0 1 1 0
 B = {    b, c, d,    f    }   -->   0 1 1 1 0 1 0
Cara menyatakan himpunan seperti ini sangat menguntungkan untuk melakukan operasi-operasi himpunan, seperti union, interseksi, dan

 komplemen, karena kita tinggal menggunakan operasi bit untuk melakukannya.
Operasi gabungan  setara dengan A or B
Operasi irisan  setara dengan A and B
Operasi komplemen AC setara dengan not A
Representasi himpunan dalam bentuk biner dipakai oleh kompiler-kompiler Pascal dan juga Delphi.
        Wikibooks memiliki buku bertajuk
Materi:Himpunan
[sunting]Referensi
Pengertian Relasi, Fungsi, Sifat dan Jenis Fungsi

31
AGU
      63 Votes
Galileo Galilei (1564-1642) merupakan salah satu astronom terkenal dari Italia yang dikenal luas dengan penemuannya tentang hubungan yang sangat teratur antara tinggi suatu benda yang dijatuhkan dengan waktu tempuhnya menuju tanah.
Konsep “fungsi” terdapat hampir dalam setiap cabang matematika, sehingga merupakan suatu yang sangat penting artinya dan banyak sekali kegunaannya. Akan tetapi pengertian dalam matematika agak  berbeda dengan pengertian dalam kehidupan sehari-hari.Dalam pengertian sehari-hari, “fungsi” adalah guna atau manfaat. Kata fungsi dalam matematika sebagaimana diperkenalkan oleh Leibniz (1646-1716) terlihat di atas digunakan untuk menyatakan suatu hubungan atau kaitan yang khas antara dua himpunan.
Mengingat konsep fungsi menyangkut hubungan atau kaitan dari dua himpunan, maka disini kita awali dulu pembicaraan kita mengenai fungsi dengan hubungan atau relasi antara dua himpunan.
A.Pengertian Relasi
Suatu relasi (biner) F dari himpunan A ke himpunan B adalah suatu perkawanan elemen-elemen di A dengan elemen-elemen di B.
B.Pengertian Relasi
Suatu relasi (biner) F dari himpunan A ke himpunan B adalah suatu perkawanan elemen-elemen di A dengan elemen-elemen di B. didefinisikan sebagai berikut :
Definisi: Suatu fungsi f dari himpunan A ke himpunan B adalah suatu relasi yang memasangkan setiap elemen dari A secara tunggal, dengan elemen pada B.
C.Sifat Fungsi
Dengan memperhatikan bagaimana elemen-elemen pada masing-masing himpunan A dan B yang direlasikan dalam suatu fungsi, maka kita mengenal tiga sifat fungsi yakni sebagai berikut :
1. Injektif (Satu-satu)
Misalkan fungsi f menyatakan A ke B maka fungsi f disebut suatu fungsi satu-satu
(injektif), apabila setiap dua elemen yang berlainan di A akan dipetakan pada dua elemen yang berbeda di B. Selanjutnya secara singkat dapat dikatakan bahwa f:AB adalah fungsi injektif apabila a a berakibat f(a) f(a) atau ekuivalen, jika f(a) = f(a)
maka akibatnya a = a’.
2. Surjektif (Onto)
Misalkan f adalah suatu fungsi yang memetakan A ke B maka daerah hasil f(A) dari fungsi f adalah himpunan bagian dari B. Apabila f(A) = B, yang berarti setiap elemen di B pasti merupakan peta dari sekurang-kurangnya satu elemen di A maka kita katakan f adalah suatu fungsi surjektif atau “f memetakan A Onto B”.
3.Bijektif (Korespondensi Satu-satu)
Suatu pemetaan f: AB sedemikian rupa sehingga f merupakan fungsi yang injektif dan surjektif sekaligus, maka dikatakan f adalah fungsi yang bijektif atau A dan B berada dalam korespondensi satu-satu
D.Jenis – jenis Fungsi
Jika suatu fungsi f mempunyai daerah asal dan daerah kawan yang sama, misalnya D, maka sering dikatakan fungsi f pada D. Jika daerah asal dari fungsi tidak dinyatakan maka yang dimaksud adalah himpunan semua bilangan real (R). Untuk fungsi-fungsi pada R kita kenal beberapa fungsi antara lain sebagai berikut.
a. Fungsi Konstan
b. Fungsi Identitas
c. Fungsi Linear
d. Fungsi Kuadrat
e. Fungsi Rasional








0 komentar:

Poskan Komentar

 
Free Blue Multi Glitter Pointer Cursors at www.totallyfreecursors.com